Dynamics of actin evolution in dinoflagellates.
نویسندگان
چکیده
Dinoflagellates have unique nuclei and intriguing genome characteristics with very high DNA content making complete genome sequencing difficult. In dinoflagellates, many genes are found in multicopy gene families, but the processes involved in the establishment and maintenance of these gene families are poorly understood. Understanding the dynamics of gene family evolution in dinoflagellates requires comparisons at different evolutionary scales. Studies of closely related species provide fine-scale information relative to species divergence, whereas comparisons of more distantly related species provides broad context. We selected the actin gene family as a highly expressed conserved gene previously studied in dinoflagellates. Of the 142 sequences determined in this study, 103 were from the two closely related species, Dinophysis acuminata and D. caudata, including full length and partial cDNA sequences as well as partial genomic amplicons. For these two Dinophysis species, at least three types of sequences could be identified. Most copies (79%) were relatively similar and in nucleotide trees, the sequences formed two bushy clades corresponding to the two species. In comparisons within species, only eight to ten nucleotide differences were found between these copies. The two remaining types formed clades containing sequences from both species. One type included the most similar sequences in between-species comparisons with as few as 12 nucleotide differences between species. The second type included the most divergent sequences in comparisons between and within species with up to 93 nucleotide differences between sequences. In all the sequences, most variation occurred in synonymous sites or the 5' UnTranslated Region (UTR), although there was still limited amino acid variation between most sequences. Several potential pseudogenes were found (approximately 10% of all sequences depending on species) with incomplete open reading frames due to frameshifts or early stop codons. Overall, variation in the actin gene family fits best with the "birth and death" model of evolution based on recent duplications, pseudogenes, and incomplete lineage sorting. Divergence between species was similar to variation within species, so that actin may be too conserved to be useful for phylogenetic estimation of closely related species.
منابع مشابه
Modeling the evolution of cells outgrowth due to the force exerted by actins
Motility and membrane deformation are crucial to motile cells. Therefore formation of protrusion in the membrane has been the subject of various studies. The stable shape of the membrane and also its movements are controlled by the forces exerted by actin filaments. In order to study the protrusion behavior, we represented a toy model based on actin filaments polar characteristic and elastic ch...
متن کاملEarly Evolutionary History of Dinoflagellates and Apicomplexans (alveolata) as Inferred from Hsp90 and Actin Phylogenies
Three extremely diverse groups of unicellular eukaryotes comprise the Alveolata: ciliates, dinoflagellates, and apicomplexans. The vast phenotypic distances between the three groups along with the enigmatic distribution of plastids and the economic and medical importance of several representative species (e.g. Plasmodium, Toxoplasma, Perkinsus, and Pfiesteria) have stimulated a great deal of sp...
متن کاملQuantitative analysis of dinoflagellates and diatoms community via Miseq sequencing of actin gene and v9 region of 18S rDNA
Miseq sequencing and data analysis for the actin gene and v9 region of 18S rDNA of 7 simulated samples consisting of different mixture of dinoflagellates and diatoms were carried out. Not all the species were detectable in all the 18S v9 samples, and sequence percent in all the v9 samples were not consistent with the corresponding cell percent which may suggest that 18S rDNA copy number in diff...
متن کاملMultiple protein phylogenies show that Oxyrrhis marina and Perkinsus marinus are early branches of the dinoflagellate lineage.
Oxyrrhis marina and Perkinsus marinus are two alveolate species of key taxonomic position with respect to the divergence of apicomplexans and dinoflagellates. New sequences from Oxyrrhis, Perkinsus and a number of dinoflagellates were added to datasets of small-subunit (SSU) rRNA, actin, alpha-tubulin and beta-tubulin sequences, as well as to a combined dataset of all three protein-coding genes...
متن کاملRe-examining alveolate evolution using multiple protein molecular phylogenies.
Alveolates are a diverse group of protists that includes three major lineages: ciliates, apicomplexa, and dinoflagellates. Among these three, it is thought that the apicomplexa and dinoflagellates are more closely related to one another than to ciliates. However, this conclusion is based almost entirely on results from ribosomal RNA phylogeny because very few morphological characters address th...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Molecular biology and evolution
دوره 28 4 شماره
صفحات -
تاریخ انتشار 2011